๋ฏธ๋ถ„์˜ ์ •์˜

์šฐ๋ฆฌ๋Š” ์ด์ œ ๋ฏธ๋ถ„์˜ ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ๋” ์ •ํ™•ํžˆ ๋งํ•˜์ž๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•  ๊ฒƒ์€ ๋ฏธ๋ถ„ํ˜•์‹์˜ ๊ฐœ๋…์œผ๋กœ, ์ด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด์„œ๋Š” graded algebra๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์•ž์œผ๋กœ graded algebra์˜ ๊ตฌ์กฐ๋ฅผ ์ฃผ๋Š” abelian group์„ $\Delta$๋กœ ํ‘œ๊ธฐํ•˜๊ธฐ๋กœ ํ•œ๋‹ค.

์ •์˜ 1 Abelian group $(\Delta, +, 0)$์— ๋Œ€ํ•˜์—ฌ, ํ•จ์ˆ˜ $\varepsilon : \Delta \times \Delta \to \{ \pm 1 \}$๊ฐ€ ๋‹ค์Œ์˜ ์„ธ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•œ๋‹ค ํ•˜์ž.

  • $\varepsilon(\alpha + \alphaโ€™, \beta) = \varepsilon(\alpha, \beta)\varepsilon(\alphaโ€™, \beta)$
  • $\varepsilon(\alpha, \beta + \betaโ€™) = \varepsilon(\alpha, \beta)\varepsilon(\alpha, \betaโ€™)$
  • $\varepsilon(\beta, \alpha) = \varepsilon(\alpha, \beta)$

์ด ๋•Œ, $\varepsilon$์„ commutation factor๋ผ ๋ถ€๋ฅธ๋‹ค.

๊ทธ๋Ÿผ ํŠนํžˆ $\varepsilon(2.\alpha, \beta) = \varepsilon(\alpha, 2.\beta) = 1$์ด๋‹ค.

์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์žฅ ๊ด€์‹ฌ์žˆ๋Š” ์˜ˆ์‹œ๋Š” $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ์ด๋‹ค. ์ด ๊ฒฝ์šฐ, ์ •์˜ 1์— ์˜ํ•˜์—ฌ $\varepsilon$์€ $\varepsilon(1,1)$์—์„œ์˜ ๊ฐ’์— ์˜ํ•ด ์™„์ „ํ•˜๊ฒŒ ๊ฒฐ์ •๋˜๋ฉฐ, ๋”ฐ๋ผ์„œ $\Delta=\mathbb{Z}$์— ์ •์˜๋˜๋Š” commutation factor๋Š” ์˜ค์ง

\[\varepsilon(p,q)=1,\qquad \varepsilon(p,q)=(-1)^{pq}\]

๋ฟ์ด๋‹ค. Commutation factor๋Š” degree $p$์™€ degree $q$์˜ ์›์†Œ์˜ ๊ณฑ์„ ์ƒ๊ฐํ•  ๋•Œ, ์ด๋“ค์ด ์„œ๋กœ ์ˆœ์„œ๋ฅผ ๋ฐ”๊ฟ€ ๋•Œ ์ƒ๊ฒจ๋‚˜๋Š” ๋ถ€ํ˜ธ๋กœ์จ ๋“ฑ์žฅํ•  ๊ฒƒ์ด๋‹ค.

์ด์ œ commutative ring $A$, $\Delta$-graded $A$-module $E$, $Eโ€™$, $Eโ€™โ€™$, $F$, $Fโ€™$, $Fโ€™โ€™$$A$-bilinear map๋“ค

\[\mu: E \times E' \to E'', \qquad \lambda_1: F \times E' \to F', \qquad \lambda_2: E \times F' \to F''\]

๊ทธ๋ฆฌ๊ณ  ์ด๋“ค์ด ์œ ๋„ํ•˜๋Š” $A$-linear map๋“ค

\[E \otimes_A E' \to E'', \qquad F \otimes_A E' \to F'', \qquad E \otimes_A F' \to F''\]

์„ ์ƒ๊ฐํ•˜๊ณ , ์ด ์„ธ $A$-linear map๋“ค์ด ๋ชจ๋‘ degree $0$ graded homomorphism์ด๋ผ ํ•˜์ž. ์ด๋“ค์€ ๊ฐ๊ฐ ๊ณฑ์…ˆ์— ํ•ด๋‹นํ•˜๋Š” ์—ฐ์‚ฐ๋“ค๋กœ, ์šฐ๋ฆฌ๋Š” ๊ฐ€๋ น $x\otimes xโ€™$์˜ $Eโ€™โ€˜$์—์„œ์˜ image๋ฅผ ๊ฐ„๋‹จํžˆ $xxโ€™$๋กœ ์ ์„ ๊ฒƒ์ด๋‹ค. $E\otimes_A Eโ€™$์—์„œ ์›์†Œ $x\otimes xโ€™$๋Š” degree $\degree(x)+\degree(xโ€™)$์— ์žˆ์œผ๋ฏ€๋กœ, ์œ„์™€ ๊ฐ™์€ ๊ฐ€์ •์—์„œ $xxโ€™$๋Š” $Eโ€™โ€˜$์˜ degree $\degree(x)+\degree(xโ€™)$ ์„ฑ๋ถ„์— ์žˆ๊ฒŒ ๋œ๋‹ค.

์ด์ œ ๋‹ค์Œ์„ ์ •์˜ํ•œ๋‹ค.

์ •์˜ 2 ์œ„์˜ ์ƒํ™ฉ์— ๋”ํ•ด commutation factor $\varepsilon: \Delta \times \Delta \to \{ \pm 1 \}$์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๊ทธ๋Ÿผ $(E, Eโ€™, Eโ€™โ€™)$์—์„œ $(F, Fโ€™, Fโ€™โ€™)$๋กœ ๊ฐ€๋Š” degree $\delta$์˜ $(A, \varepsilon)$-derivation$(A,\varepsilon)$-๋ฏธ๋ถ„ ํ˜น์€ ๊ฐ„๋‹จํžˆ $\varepsilon$-derivation์€ ๋‹ค์Œ์˜ ์กฐ๊ฑด

\[d''(xx') = (dx)x' + \varepsilon(\delta, \deg(x))x(d'x')\]

์„ ๋งŒ์กฑํ•˜๋Š” degree $\delta$ graded $A$-module homomorphism๋“ค์˜ triple $d: E \rightarrow F$, $dโ€™: Eโ€™ \rightarrow Fโ€™$, $dโ€™โ€™: Eโ€™โ€™ \rightarrow Fโ€™โ€˜$์ด๋‹ค. ๋งŒ์ผ $\varepsilon$์ด ํ•ญ์ƒ $1$์ด ๋˜์–ด, ์œ„์˜ ์‹์—์„œ $\varepsilon$์„ ์—†์•จ ์ˆ˜ ์žˆ๋‹ค๋ฉด $(d,dโ€™,dโ€™โ€™)$๋ฅผ ๊ฐ„๋‹จํžˆ derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

์œ„์˜ ์ •์˜์—์„œ ํ˜ผ๋™์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ•ญ๋“ค์ด ์–ด๋””์— ์†ํ•˜๋Š”์ง€, ๊ฐ€๋ น ์šฐ๋ณ€์˜ $(dx)xโ€™$๋Š” $dx\in F$์™€ $xโ€™\in Eโ€™$๋ฅผ $\lambda_1$์— ์˜ํ•ด ๊ณฑํ•˜์—ฌ ์–ป์€ $Fโ€™โ€˜$์˜ ์›์†Œ๋ผ๋Š” ๊ฒƒ ๋“ฑ์„ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ๋„ ์ข‹๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ๋Š” ์šฐ๋ฆฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠน๋ณ„ํ•œ ๋‘ ๊ฒฝ์šฐ์— ๊ด€์‹ฌ์ด ์žˆ๋‹ค.

  1. $E=F$, $Eโ€™=Fโ€™$, $Eโ€™โ€˜=Fโ€™โ€™$, ๊ทธ๋ฆฌ๊ณ  ์„ธ ๊ฐœ์˜ bilinear map $ \mu, \lambda_1, \lambda_2 $๊ฐ€ ๋ชจ๋‘ ๋™์ผํ•œ ๊ฒฝ์šฐ
  2. $E=Eโ€™=Eโ€™โ€™$, $F=Fโ€™=Fโ€™โ€˜$์ด๊ณ , ๋”ฐ๋ผ์„œ $\mu:E\otimes_A E \rightarrow E$์— ์˜ํ•ด $E$๊ฐ€ graded algebra๊ฐ€ ๋˜๋ฉฐ,

    \[\lambda_1: F \otimes_A E \to F, \qquad \lambda_2: E \otimes_A F \to F\]

    ์ธ ๊ฒฝ์šฐ. ์ด ๊ฒฝ์šฐ, ์ž„์˜์˜ $x,y\in E$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

    \[d(xy)=(dx)y+\varepsilon(\delta, \deg(x))x(dy)\]

    ์„ ๋งŒ์กฑํ•˜๋Š” ๋‹จ์ผํ•œ $d:E \rightarrow F$๋ฅผ $E$์—์„œ $F$๋กœ์˜ $\varepsilon$-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ๋ฅผ motivation ์‚ผ์•„ ์šฐ๋ฆฌ๋Š” ํ‘œ๊ธฐ์˜ ํŽธ์˜์ƒ $d, dโ€™, dโ€™โ€˜$๋ฅผ ๋ชจ๋‘ ๊ฐ™์€ ๋ฌธ์ž $d$๋กœ ํ†ต์ผํ•˜์—ฌ ์“ฐ๊ธฐ๋„ ํ•˜๋ฉฐ, ๊ทธ๋Ÿผ ์ •์˜ 2์˜ ์‹์€

\[d(xx')=(dx)x'+\varepsilon(\delta,\deg(x))x (dx)\]

๋กœ ์“ธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์—์„œ๋Š” ์ด ์ •๋„ ํ‘œ๊ธฐ๋ฒ•์˜ ๋‚จ์šฉ์€ ํ˜ผ๋™์„ ์ฃผ์ง€ ์•Š์„ ๊ฒƒ์ด๋‹ค.

๋งŒ์ผ ์œ„์˜ ๋‘ ๊ฒฝ์šฐ๊ฐ€ ๋ชจ๋‘ ์„ฑ๋ฆฝํ•˜์—ฌ $E=Eโ€™=Eโ€™โ€˜=F=Fโ€™=Fโ€™โ€˜$์ด๊ณ  $\lambda_1, \lambda_2$๊ฐ€ $E$์—์„œ์˜ ๊ณฑ์…ˆ์ด๋ฉฐ, derivation์ด ๋‹จ์ผํ•œ graded endomorphism $d: E \rightarrow E$์ธ ๊ฒฝ์šฐ๊ฐ€ ๊ฐ€์žฅ ๋งŽ์ด ๋“ฑ์žฅํ•œ๋‹ค. ๊ทธ๋Ÿผ $\varepsilon$-derivation์€ $A$์—์„œ $A$๋กœ ๊ฐ€๋Š” ํ•จ์ˆ˜๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ด ๊ฒฝ์šฐ ์šฐ๋ฆฌ๋Š” $\varepsilon$-derivation์„ ๊ฐ„๋‹จํžˆ $A$์˜ $\varepsilon$-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

ํ•œํŽธ ์šฐ๋ฆฌ๋Š” ์•ž์—์„œ $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ๊ฐ€ ์šฐ๋ฆฌ์˜ ์ฃผ๋œ ๊ด€์‹ฌ์‚ฌ๋ผ ํ•˜์˜€๋Š”๋ฐ, ์ด ๊ฒฝ์šฐ non-trivialํ•œ commutation factor $\varepsilon(p,q)=(-1)^{pq}$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด, ์ด $\varepsilon$์— ๋Œ€ํ•˜์—ฌ ์ž„์˜์˜ ์ง์ˆ˜ ์ฐจ์ˆ˜ $\varepsilon$-derivation์€ ํ•ญ์ƒ $\varepsilon$์˜ ์˜ํ–ฅ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•ˆ๋‹ค. ํ™€์ˆ˜ ์ฐจ์ˆ˜์˜ ๊ฒฝ์šฐ, ์ž„์˜์˜ homogeneous element $x\in E$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[d(xx')=(dx)x'+(-1)^{\deg x}x(dx')\]

์ด ์„ฑ๋ฆฝํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ $d$๋ฅผ anti-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

๋ฏธ๋ถ„ํ˜•์‹

์ง€๊ธˆ๊นŒ์ง€์˜ ๋…ผ์˜๊ฐ€ ์–ด๋–ป๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์•Œ๊ธฐ ์œ„ํ•ด, ์ž ์‹œ ๊ฐ„๋‹จํ•œ ์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณด์ž. ์—ฌ๊ธฐ์—์„œ $\mathbb{K}$๋Š” field์ด๊ณ  polynomial algebra $E=\mathbb{K}[\x_1,\ldots, \x_n]$์ด๋‹ค.

์šฐ์„  degree $0$ derivation์€ ํ•ญ์ƒ commutation factor๋ฅผ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, $E$๋ฅผ non-graded $\mathbb{K}$-algebra๋กœ ๋ณธ ํ›„ $E$์—์„œ $E$๋กœ์˜ derivation์„ ์ƒ๊ฐํ•˜๋ฉด $\varepsilon$์€ ๋“ฑ์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด์ œ ๊ฐ๊ฐ์˜ $i$์— ๋Œ€ํ•˜์—ฌ, $\partial_i:E \rightarrow E$๋ฅผ ํŽธ๋ฏธ๋ถ„ $\partial/\partial \x_i$๋กœ ์ •์˜ํ•˜๋ฉด Leibniz rule์— ์˜ํ•ด ์ •์˜ 2์˜ ๋“ฑ์‹์ด ๋งŒ์กฑ๋œ๋‹ค.

์ด๋ฒˆ์—๋Š” graded algebra์˜ ์˜ˆ์‹œ๋ฅผ ๋ณด์ž. ์œ„์™€ ๊ฐ™์ด ์ •์˜๋œ polynomial algebra $E$์— ๋Œ€ํ•˜์—ฌ, free $A$-module $M$์„ ๋‹ค์Œ์˜ ์›์†Œ๋“ค

\[d\x_1,d\x_2,\ldots, d\x_n\]

๋กœ ์ƒ์„ฑ๋˜๋„๋ก ์žก๊ณ  exterior algebra $\bigwedge(M)$์„ ์ƒ๊ฐํ•˜๋ฉด ์ด exterior algebra๋Š” $\mathbb{Z}$-graded $E$-algebra

\[\bigwedge(M)=\bigoplus_{d=0}^n{\bigwedge}^d(M)\]

์œผ๋กœ ์ฃผ์–ด์ง€๋ฉฐ, ์ด ๋•Œ $\bigwedge^0(M)=A$์ด๊ณ  ๊ฐ๊ฐ์˜ $k$์— ๋Œ€ํ•˜์—ฌ $\bigwedge^k(M)$์€

\[d\x_J=d\x_{j_1}\wedge d\x_{j_2}\wedge\cdots\wedge d\x_{j_k},\qquad j_1<\cdots< j_k\]

์˜ ๊ผด๋กœ ์ƒ์„ฑ๋˜๋Š” free $E$-module์ด๋‹ค. ([๋‹ค์ค‘์„ ํ˜•๋Œ€์ˆ˜ํ•™] ยงํ…์„œ๋Œ€์ˆ˜, โ‹๋ช…์ œ 13) ์ด์ œ ๊ฐ๊ฐ์˜ basis

\[f\; d\x_{j_1}\wedge d\x_{j_2}\wedge\cdots\wedge d\x_{j_d}\in {\bigwedge}^k(M)\]

์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[d(f\; d\x_{j_1}\wedge d\x_{j_2}\wedge\cdots\wedge d\x_{j_k})=\sum_{i=1}^n\frac{\partial f}{\partial \x_i}d\x_i\wedge d\x_{j_1}\wedge d\x_{j_2}\wedge\cdots\wedge d\x_{j_k}\in{\bigwedge}^{k+1}(M)\]

์œผ๋กœ ์ •์˜ํ•˜๋ฉด ์ด๋ฅผ ํ™•์žฅํ•˜์—ฌ $d: \bigwedge M \rightarrow \bigwedge M$์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿผ $d$๋Š” degree $1$์„ ๊ฐ–๋Š” $\bigwedge(M)$์˜ antiderivation์ด ๋œ๋‹ค.

Bracket

ํ•œํŽธ, ์œ„์˜ ๋‘ ๊ฒฝ์šฐ ์ค‘ ์ฒซ์งธ ์กฐ๊ฑด์ด ์„ฑ๋ฆฝํ•œ๋‹ค ๊ฐ€์ •ํ•˜์ž. ๊ทธ๋Ÿผ $d=(d,dโ€™,dโ€™โ€™)$์€ $(E,Eโ€™,Eโ€™โ€™)$์—์„œ ์ž๊ธฐ์ž์‹ ์œผ๋กœ์˜ ํ•จ์ˆ˜๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, $\varepsilon$-derivation๋“ค์˜ ํ•ฉ์„ฑ ๋˜ํ•œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์œผ๋กœ ์ •์˜ 2์˜ ์‹์„ ๋ณด๋ฉด, ์ž„์˜๋กœ ์ฃผ์–ด์ง„ ๋‘ degree $\delta_1$, $\delta_2$์˜ $\varepsilon$-derivation $d_1,d_2$์™€ ์ž„์˜์˜ $x\in E$, $xโ€™\in Eโ€™$์— ๋Œ€ํ•˜์—ฌ

\[\begin{aligned}(d_2\circ d_1)(xx')&=d_2((d_1x)x'+\varepsilon(\delta_1, \deg(x))x(d_1'x'))\\&=(d_2d_1x)x'+\varepsilon(\delta_2,\deg(d_1x))(d_1x)(d_2'x')+\varepsilon(\delta_1, \deg(x))(d_2x)(d_1'x')+\varepsilon(\delta_1, \deg(x))\varepsilon(\delta_2, \deg(x))x(d_2' d_1'x')\end{aligned}\]

์ด๋ฏ€๋กœ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ์—์„œ $\varepsilon$-derivation๋“ค์˜ ํ•ฉ์„ฑ์€ $\varepsilon$-derivation์ด ์•„๋‹ˆ๋‹ค. ์ฆ‰, ์ผ๋ฐ˜์ ์œผ๋กœ $\Delta$-graded $A$-module๋“ค์˜ triple๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ category๋ฅผ ์ƒ๊ฐํ•˜๊ณ , ๊ณ ์ •๋œ triple $(E,Eโ€™,Eโ€™โ€™)$์˜ endomorphism algebra

\[\End_{\bgr_\Delta \Alg{A}^3}(E, E', E'')\]

๋ฅผ ์ƒ๊ฐํ•˜๋ฉด, $\varepsilon$-derivation๋“ค์˜ ๋ชจ์ž„์€ ์ด endomorphism algebra์˜ subalgebra๋ฅผ ์ •์˜ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ๊ณ„์‚ฐ์„ ์‚ดํŽด๋ณธ๋‹ค๋ฉด, ์ด ์œ„์— ์–ด๋– ํ•œ ์ข…๋ฅ˜์˜ ๊ณฑ์…ˆ์„ ์ •์˜ํ•ด์•ผ $\varepsilon$-derivation๋“ค์˜ ๋ชจ์ž„์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋„ ๋ช…ํ™•ํ•˜๋‹ค. ์ฆ‰ ์šฐ๋ณ€์˜ ๋„ค ํ•ญ ์ค‘, ๊ฐ€์šด๋ฐ์˜ ๋‘ ํ•ญ์„ ์—†์• ์ฃผ๋ฉด $d_2d_1$์ด degree $\delta_1+\delta_2$์˜ $\varepsilon$-derivation์ด ๋  ๊ฒƒ์ด๋‹ค.

์ด๋ฅผ ์œ„ํ•ด ์šฐ์„  ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์œผ๋กœ ์ž„์˜์˜ $\Delta$-graded algebra $G$์™€ ๊ณ ์ •๋œ commutation factor $\varepsilon$์— ๋Œ€ํ•˜์—ฌ, $G$์˜ ๋‘ homogeneous element $x,y$์— ๋Œ€ํ•˜์—ฌ ์ด๋“ค์˜ $\varepsilon$-bracket์„ ๋‹ค์Œ์˜ ์‹

\[[x,y]_\varepsilon=xy-\varepsilon(\deg(x),\deg(y))yx\]

์œผ๋กœ ์ •์˜ํ•˜์ž. ๊ทธ๋Ÿผ ์ด๋ฅผ ํ†ตํ•ด $G=\End_{\bgr_\Delta \Alg{A}^3}(E, Eโ€™, Eโ€™โ€™)$์—์„œ์˜ $\varepsilon$-bracket์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ช…์ œ 3 $d_1, d_2$๋ฅผ $(E, Eโ€™, Eโ€™โ€™)$ ์œ„์˜ $\varepsilon$-derivation๋“ค์ด๋ผ ํ•˜์ž. ๊ฐ๊ฐ์˜ degree๋ฅผ $\delta_1$, $\delta_2$๋ผ ํ•˜๋ฉด, ์ด๋“ค์˜ $\varepsilon$-bracket

\[[d_1, d_2]_\varepsilon = d_1 \circ d_2 - \varepsilon_{\delta_1, \delta_2} \, d_2 \circ d_1\]

์€ degree $\delta_1 + \delta_2$๋ฅผ ๊ฐ–๋Š” ๋˜ ๋‹ค๋ฅธ $\varepsilon$-derivation์ด ๋œ๋‹ค. ํŠนํžˆ, ๋งŒ์ผ $d$๊ฐ€ degree $\delta$๋ฅผ ๊ฐ–๋Š” $\varepsilon$-derivation์ด๊ณ , $\varepsilon_{\delta, \delta} = -1$์ด๋ผ๋ฉด, $d^2 = d \circ d$๋Š” derivation์ด๋‹ค.

์ด์— ๋Œ€ํ•œ ์ฆ๋ช…์€ ์•ž์—์„œ ๊ณ„์‚ฐํ•œ $(d_2\circ d_1)(xxโ€™)$์˜ ์ „๊ฐœ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์ž๋ช…ํ•˜๋‹ค.

๊ทธ๋Ÿผ ํŠนํžˆ $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ๋กœ ํ•œ์ •์ง€์œผ๋ฉด, ์œ„์˜ ๋ช…์ œ๋Š” ๋‹ค์Œ์˜ ๋”ฐ๋ฆ„์ •๋ฆฌ๋ฅผ ๊ฐ–๋Š”๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 4 $\Delta = \mathbb{Z}$๋ผ ํ•˜์ž. ์ด๋•Œ ๋‹ค์Œ์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

  1. Antiderivation์˜ ์ œ๊ณฑ์€ derivation์ด๋‹ค.
  2. ๋‘ derivation์˜ bracket์€ derivation์ด๋‹ค.
  3. antiderivation๊ณผ ์ง์ˆ˜ ์ฐจ์ˆ˜ derivation์˜ bracket์€ antiderivation์ด๋‹ค.
  4. $d_1$, $d_2$๊ฐ€ antiderivation์ด๋ฉด, $d_1 d_2 + d_2 d_1$์€ derivation์ด๋‹ค.

ํ•œํŽธ, polynomial algebra ์œ„์— ์ •์˜๋œ ํŽธ๋ฏธ๋ถ„์„ ๋ณด๋ฉด ์ด๋“ค์€ ์ž„์˜์˜ $i,j$์— ๋Œ€ํ•˜์—ฌ $\partial_i\partial_j=\partial_j\partial_i$๋ฅผ ๋งŒ์กฑํ•œ๋‹ค. ์ด์ œ ์ผ๋ฐ˜์ ์ธ ๋ฏธ๋ถ„์—ฐ์‚ฐ์ž์ฒ˜๋Ÿผ $D=\partial_i+\partial_j$๋ฅผ ์ ๊ณ , $D^2$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด ์ด๋Š”

\[D^2=(\partial_i+\partial_j)^2=\partial_i^2+\partial_i\partial_j+\partial_j\partial_i+\partial_j^2\]

์™€ ๊ฐ™์ด ์ „๊ฐœํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, $\partial_i$์™€ $\partial_j$๊ฐ€ commuteํ•˜๋ฏ€๋กœ ์ด๋ฅผ ๋” ๊ฐ„๋‹จํžˆ

\[D^2=\partial_i^2+2\partial_i\partial_j+\partial_j^2\]

์™€ ๊ฐ™์ด ์ ์„ ์ˆ˜๋„ ์žˆ๋‹ค. ๋‹ค์Œ ๋ช…์ œ๋Š” ์ด๋ฅผ ๋”์šฑ ์ผ๋ฐ˜ํ™”ํ•œ ๊ฒƒ์ด๋‹ค.

๋ช…์ œ 5 ์œ„ ๊ฐ€์ •๊ณผ ํ‘œ๊ธฐ ์•„๋ž˜์—์„œ, ๋ฏธ์ง€์ˆ˜ $T_1, \dots, T_n, T_1โ€™, \dots, T_nโ€™$์— ๋Œ€ํ•œ ๋‹คํ•ญ์‹ $F \in A[\x_1, \dots, \x_k]$๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ํ•˜์ž. ์ฆ‰ $F(T)$, $F(Tโ€™)$๋Š” ๊ฐ๊ฐ

\[F(T) = F(T_1, \dots, T_n), \qquad F(T') = F(T_1', \dots, T_n')\]

๋ฅผ ๋œปํ•œ๋‹ค. ๋น„์Šทํ•˜๊ฒŒ

\[F(T + T') = F(T_1 + T_1', \dots, T_n + T_n')\]

๋ผ๊ณ  ์ •์˜ํ•˜์ž.

์ด์ œ ๋งŒ์ผ ๋‹คํ•ญ์‹ $P$๊ฐ€ ๋‹ค์Œ์˜ ์‹

\[P(T + T') = \sum_i Q_i(T) R_i(T')\]

์„ ๋งŒ์กฑํ•œ๋‹ค๋ฉด, ์ž„์˜์˜ $x\in E$, $x'\in Eโ€™$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[P(D)(x x') = \sum_i (Q_i(D) x)(R_i(D) x')\]

์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

$A$-๋Œ€์ˆ˜์˜ ๋ฏธ๋ถ„

์ด์ œ ์šฐ๋ฆฌ๋Š” ์ •์˜ 2 ์ดํ›„ ๋‹ค๋ค˜๋˜ ๋‘ ๊ฐ€์ง€ ํŠน๋ณ„ํ•œ ๊ฒฝ์šฐ ์ค‘ ๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ์ฆ‰ $\Delta$-graded $A$-algebra $E$์™€ graded $A$-module $F$, ๊ทธ๋ฆฌ๊ณ  ๋‘ ๊ฐœ์˜ ๊ณฑ์…ˆ $E\otimes_AF \rightarrow F$์™€ $F\otimes_AE \rightarrow F$๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž.

๋ช…์ œ 6 Degree $\delta$์˜ $\varepsilon$-derivation $d:E \to F$์— ๋Œ€ํ•˜์—ฌ, $\ker(d)$๋Š” $E$์˜ graded subalgebra์ด๋ฉฐ, ๋งŒ์•ฝ $E$๊ฐ€ $1$์„ ๊ฐ–๋Š”๋‹ค๋ฉด $1 \in \ker(d)$์ด๋‹ค.

์ฆ๋ช…

์šฐ์„  $\ker(d)$๊ฐ€ $E$์˜ $A$-submodule์ธ ๊ฒƒ์€ ์ž๋ช…ํ•˜๋ฏ€๋กœ, $\ker(d)$๊ฐ€ ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๋‹ซํ˜€์žˆ๋‹ค๋Š” ๊ฒƒ๋งŒ ๋ณด์ด๋ฉด ๋œ๋‹ค. ์ž„์˜์˜ homogeneous $x, y \in \ker(d)$์— ๋Œ€ํ•˜์—ฌ,

\[d(xy) = (dx)y + \varepsilon(\delta, \deg(x))x(dy) = 0\]

์ด๋ฏ€๋กœ $xy \in \ker(d)$์ด๋‹ค. ๋”ฐ๋ผ์„œ $\ker(d)$๋Š” graded subalgebra์ด๋‹ค.

์ด์ œ ๋งŒ์ผ $E$๊ฐ€ $1$์„ ๊ฐ–๋Š”๋‹ค๋ฉด $1$์€ degree $0$์ด๋ฏ€๋กœ,

\[d(1) = d(1 \cdot 1) = (d1) \cdot 1 + \varepsilon_{\delta, 0} \cdot 1 \cdot (d1) = d1 + d1 = 2d1\]

์ด ๋˜์–ด, $d(1) = 0$์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๋”ฐ๋ผ์„œ ๋งŒ์ผ $d_1,d_2$๊ฐ€ $E$์—์„œ $F$๋กœ์˜ degree $\delta$ $\varepsilon$-derivation์ด๊ณ  ์ด๋“ค์ด $A$์˜ algebra๋กœ์„œ์˜ generator์—์„œ ๊ทธ ๊ฐ’์ด ๋ชจ๋‘ ๊ฐ™๋‹ค๋ฉด $d_1=d_2$์—ฌ์•ผ ํ•œ๋‹ค. ํ•œํŽธ ์—ญ์›์— ๋Œ€ํ•ด์„œ๋Š” ๋‹ค์Œ์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

๋ช…์ œ 7 $E$๊ฐ€ $1$์„ ๊ฐ–๋Š” $\Delta$-graded $A$-algebra๋ผ ํ•˜๊ณ , degree $\delta$์˜ $\varepsilon$-derivation $d:E \to F$๋ฅผ ์ƒ๊ฐํ•˜์ž. ๋งŒ์ผ $x$๊ฐ€ $E$์˜ invertible homogeneous element๋ผ๋ฉด, ๊ทธ ์—ญ์› $x^{-1}$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[d(x^{-1}) = -\varepsilon_{\delta, \deg(x)} x^{-1}(d(x))x^{-1} = -\varepsilon_{\delta, \deg(x)} (d(x)) x^{-2}\]

์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

์ฆ๋ช…

๋ช…์ œ 5์— ์˜ํ•ด $d(1) = 0$์ด๋ฏ€๋กœ,

\[0 = d(xx^{-1}) = d(x))x^{-1} + \varepsilon_{\delta, \deg(x)}x(d(x^{-1})\]

์ด๋‹ค. ์–‘๋ณ€์˜ ์™ผ์ชฝ์— $x^{-1}$๋ฅผ ๊ณฑํ•˜๋ฉด

\[0 = x^{-1}(d(x))x^{-1} + \varepsilon_{\delta, \deg(x)} d(x^{-1})\]

์ด๊ณ , ์ •๋ฆฌํ•˜๋ฉด

\[d(x^{-1}) = -\varepsilon_{\delta, \deg(x)} x^{-1}(d(x))x^{-1}.\]

์„ ์–ป๋Š”๋‹ค. ๋˜ํ•œ $x^{-1}$์˜ ์ฐจ์ˆ˜๋Š” $-\deg(x)$์ธ ๊ฒƒ์„ ์ด์šฉํ•˜์—ฌ $d(x^{-1}x)$๋ฅผ ๊ณ„์‚ฐํ•˜๋ฉด ๋‘˜์งธ ๋“ฑ์‹์„ ์–ป๋Š”๋‹ค.

๋ช…์ œ 8 ์–ด๋–ค $A$-algebra $E$๊ฐ€ integral domain์ด๋ผ ํ•˜๊ณ , ๊ทธ field of fraction $K=\Frac E$๋ฅผ ์ƒ๊ฐํ•˜์ž. ์ž„์˜์˜ $K$-vector space $F$๋ฅผ $E$-module๋กœ ๋ณด์•„ $A$-derivation $d:E \rightarrow F$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด, $d$๋Š” ์œ ์ผํ•œ ๋ฐฉ์‹์œผ๋กœ $K$์—์„œ $F$๋กœ์˜ $A$-derivation์œผ๋กœ ํ™•์žฅ๋œ๋‹ค.

์ฆ๋ช…

์ž„์˜์˜ derivation $d:E \rightarrow f$๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค ํ•˜๊ณ , $d$๋ฅผ $K$ ์œ„๋กœ ํ™•์žฅํ•œ $\bar{d}$๊ฐ€ ์กด์žฌํ•œ๋‹ค๋ฉด, ๋ช…์ œ 7์„ ์ ์šฉํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[\bar{d}(u/v) = v^{-1} d(u) - v^{-2} u\, d(v)\]

์ด ์„ฑ๋ฆฝํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ , ๋”ฐ๋ผ์„œ $\bar{d}$๊ฐ€ ๋งŒ์ผ ์กด์žฌํ•œ๋‹ค๋ฉด ๊ทธ ํ‘œํ˜„์€ ์œ ์ผํ•˜๋‹ค.

์ด ์ •์˜๊ฐ€ $B$์˜ ์›์†Œ ํ‘œ๊ธฐ $u/v$์˜ ์„ ํƒ์— ์˜์กดํ•˜์ง€ ์•Š์Œ์„ ๋ณด์ด์ž. ์ฆ‰, $u/v = uโ€™/vโ€™$์ผ ๋•Œ๋„

\[v^{-1} d(u) - v^{-2} u\, d(v) = v'^{-1} d(u') - v'^{-2} u'\, d(v')\]

์ด์–ด์•ผ ํ•œ๋‹ค.

$uvโ€™ = uโ€™v$๋ผ๊ณ  ๋‘์ž. ์–‘๋ณ€์— $d$๋ฅผ ์ทจํ•˜๋ฉด

\[v' d(u) + u\, d(v') = v\, d(u') + u'\, d(v)\]

์ด๋ฏ€๋กœ ์–‘๋ณ€์— $vvโ€™$๋ฅผ ๊ณฑํ•˜๋ฉด

\[v v' d(u) - u\, v\, d(v') = v v' d(u') - u'\, v'\, d(v)\]

์ด๊ณ , ์ด๋ฅผ ์ •๋ฆฌํ•˜๋ฉด

\[v' d(u) - v^{-1} u\, d(v) = v' d(u') - v'^{-1} u'\, d(v')\]

์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ •์˜๋Š” $F$์˜ ์›์†Œ $u/v$์˜ ํ‘œํ˜„์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์ž˜ ์ •์˜๋˜์–ด ์žˆ๋‹ค. ์ด์ œ $\bar{d}$๊ฐ€ ์‹ค์ œ๋กœ $K$์—์„œ $F$๋กœ์˜ $A$-derivation์˜ ์กฐ๊ฑด์„ ใ…๋‚ฎ๊ณป๋‚˜๋‹ค๋Š” ๊ฒƒ์€ ๋‹จ์ˆœํ•œ ๊ณ„์‚ฐ์ด๋‹ค.

๋‹ค์Œ ๋ช…์ œ์—์„œ, ํ‘œ๊ธฐ์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด ์ž„์˜์˜ degree $\delta$ $\varepsilon$-derivation $d:A \rightarrow E$์— ๋Œ€ํ•˜์—ฌ

\[Z_\varepsilon=\{a\in A\mid \text{$xa_d=\varepsilon(\deg(a),\deg(x))a_dx$ for all homogeneous component $a_d$ of $a$ and for all homogeneous $x\in E$.}\}\]

์œผ๋กœ ์ •์˜ํ•˜์ž.

๋ช…์ œ 9 $A$๊ฐ€ unital graded associative $A$-algebra์ด๊ณ  $E$๊ฐ€ graded $(A, A)$-bimodule์ด๋ผ ํ•˜์ž. ์ด์ œ $d: A \to E$๊ฐ€ degree $\delta$์˜ $\varepsilon$-derivation์ด๊ณ , $a$๊ฐ€ degree $\alpha$์˜ $Z_\varepsilon$์˜ homogeneous element๋ผ ํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด morphism

\[x \mapsto a (d x)\]

๋Š” degree $\delta + \alpha$์˜ $\varepsilon$-derivation์ด๋‹ค.

์ฆ๋ช…

์ฃผ์–ด์ง„ morphism์„ $dโ€™$๋กœ ์ ์œผ๋ฉด ์ด morphism์€ ์ž๋ช…ํ•˜๊ฒŒ $A$-linear์ด๋‹ค. ์ด์ œ $dโ€™$๊ฐ€ $\varepsilon$-derivation์ž„์„ ๋ณด์ด๊ธฐ ์œ„ํ•ด ์ž„์˜์˜ degree $\deltaโ€™$ homogeneous element $x$์™€ ์ž„์˜์˜ $y\in A$์— ๋Œ€ํ•˜์—ฌ

\[\begin{aligned}d'(xy)&=a(dx)y+\varepsilon(\delta, \delta')a(x(dy))\\&=a(dx)y+\varepsilon(\delta, \delta')\varepsilon(\alpha,\delta')xa(dy)\\&=(d'x)y+\varepsilon(\delta+\alpha,\delta')x(d'y)\end{aligned}\]

์ด๋ฏ€๋กœ $dโ€™$๋Š” degree $\delta + \alpha$ $\varepsilon$-derivation์ด ๋œ๋‹ค.

ํ•œํŽธ $E$๊ฐ€ $\varepsilon$-bracket์ด ์ฃผ์–ด์ง„ $\Delta$-graded (associative) $A$-algebra๋ผ๋ฉด ์ด ์œ„์—๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด $\varepsilon$-derivation์ด ์กด์žฌํ•œ๋‹ค.

์ •์˜ 10 Graded $A$-algebra $E$์˜ homogeneous element $z\in E$์— ๋Œ€ํ•˜์—ฌ, ๋‹ค์Œ์˜ morphism

\[x\mapsto [z,x]_\varepsilon\]

์„ $\ad_\varepsilon(z)$์œผ๋กœ ์ ๋Š”๋‹ค.

๊ทธ๋Ÿผ ๋‹ค์Œ์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

๋ช…์ œ 11 $E$๊ฐ€ graded $A$-algebra๋ผ ํ•˜์ž.

  1. ์ž„์˜์˜ $\varepsilon$-derivation $d : E \rightarrow E$์™€ $E$์˜ ๋ชจ๋“  homogeneous ์›์†Œ $z$์— ๋Œ€ํ•˜์—ฌ ${[d, \ad(a)]_\varepsilon = \ad(dz)}$์ด ์„ฑ๋ฆฝํ•œ๋‹ค.
  2. ๋งŒ์ผ $A$๊ฐ€ associative๋ผ๋ฉด, $\ad(z)$๋Š” $A$์˜ $\varepsilon$-derivation์ด๋ฉฐ, ๊ทธ degree๋Š” $\deg(z)$์ด๋‹ค.
์ฆ๋ช…
  1. $d$๊ฐ€ degree $\delta$ $\varepsilon$-derivation์ด๋ผ ํ•˜๊ณ , $\zeta = \deg(z)$๋ผ๊ณ  ํ•˜์ž. ์ด์ œ $f = [d, \ad(z)]_\varepsilon$๋ผ ํ•˜๋ฉด, ๋ชจ๋“  degree $\xi$ homogeneous element $x \in A$์— ๋Œ€ํ•ด,

    \[\begin{aligned}f(x)&=d(z x - \varepsilon(\zeta, \xi) x z) - \varepsilon(\delta, \zeta) (z (dx) - \varepsilon(\zeta, \delta+\xi) (dx) z) \\&= d(z x) - \varepsilon(\zeta, \xi) d(x z) - \varepsilon(\delta, \zeta) z (dx) + \varepsilon(\zeta,2.\delta+\xi) d(x) z \\&=(dz)x+\varepsilon(\delta, \zeta)z(dx)-\varepsilon(\zeta,\xi)((dx)z+\varepsilon(\delta, \xi)x(dz))- \varepsilon(\delta, \zeta) z (dx) + \varepsilon(\zeta,2.\delta+\xi) (dx) z\\&=(dz)x+\varepsilon(\delta,\zeta)z(dx)-\varepsilon(\zeta,\xi)(dx)z-\varepsilon(\delta+\zeta,\xi)x(dz)-\varepsilon(\delta,\zeta)z (dx)+\varepsilon(\zeta,\xi)(dx)z\\&=(dz)x-\varepsilon(\delta+\zeta,\xi)x(dz)=[dz,x]_\varepsilon=\ad_\varepsilon(dz)(x)\end{aligned}\]

    ์ด๋ฏ€๋กœ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

  2. ๋ชจ๋“  degree $\xi$ homogeneous element $x \in A$์™€ degree $\eta$ homogeneous element $y \in A$์— ๋Œ€ํ•ด,

    \[\begin{aligned}\ad(z)(x y) &= z(x y) - \varepsilon(\zeta, \xi + \eta)(x y) z \\&= (z x) y - \varepsilon(\zeta, \xi) x z y + \varepsilon(\zeta, \xi) x z y - \varepsilon(\zeta, \xi + \eta) x y z \\&= (ax-\varepsilon(\zeta,\xi xz)y+\varepsilon(zeta,\xi)x(ay-\varepsilon(\zeta,\eta)ya)\\&=\ad(z)(x) \cdot y + \varepsilon(\zeta, \xi) x \cdot \ad(z)(y)\end{aligned}\]

    ์ด๋‹ค.

๋”ฐ๋ผ์„œ, $E$๊ฐ€ associative graded $A$-algebra๋ผ๋ฉด ์ •์˜ 10์„ ํ†ตํ•ด $E$์˜ ์ž„์˜์˜ homogeneous๊ฐ€ $E$์—์„œ ์ž๊ธฐ ์ž์‹ ์œผ๋กœ์˜ $\varepsilon$-derivation์„ ์ •์˜ํ•˜๋ฉฐ, ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ inner $\varepsilon$-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

์ด๊ฒƒ์ด ์„ฑ๋ฆฝํ•  ๊ฒฝ์šฐ, ์œ„์˜ ์‹์—์„œ $d$๋ฅผ inner $\varepsilon$-derivation์œผ๋กœ ๋Œ€์ฒดํ•ด์ฃผ๋ฉด ๋‹ค์Œ ๋”ฐ๋ฆ„์ •๋ฆฌ๋ฅผ ์–ป๋Š”๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 12 Associative graded algebra $E$์˜ ๋‘ homogeneous ์›์†Œ $x,y$์— ๋Œ€ํ•ด ๋‹ค์Œ์˜ ์‹

\[{[\ad_\varepsilon(x), \ad_\varepsilon(y)]_\varepsilon = \ad_\varepsilon([x,y]_\varepsilon)}\]

์ด ํ•ญ์ƒ ์„ฑ๋ฆฝํ•œ๋‹ค.

๋˜ํ•œ, ์œ„์˜ ๋”ฐ๋ฆ„์ •๋ฆฌ์˜ ๋“ฑ์‹์€ ์ž„์˜์˜ homogeneous $z\in E$์— ๋Œ€ํ•ด ํ™•์ธํ•จ์œผ๋กœ์จ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, $x,y,z$๊ฐ€ ๊ฐ๊ฐ degree $\xi,\eta,\zeta$์˜ homogeneous element๋ผ ํ•˜๋ฉด ๋‹ค์Œ์˜ ์‹

\[{\varepsilon}_{\xi, \zeta} [[x, [y,z]_{\varepsilon}]_{\varepsilon} + \varepsilon_{\eta,\xi} [y, [z,x]_{\varepsilon}]_{\varepsilon} + \varepsilon_{\zeta,\eta} [z, [x,y]_{\varepsilon}]_{\varepsilon} = 0\]

์ด ์„ฑ๋ฆฝํ•˜๋ฉฐ, ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ Jacobi identity๋ผ ๋ถ€๋ฅธ๋‹ค.

๋Œ“๊ธ€๋‚จ๊ธฐ๊ธฐ