๋ฏธ๋ถ„์˜ ์ •์˜

์šฐ๋ฆฌ๋Š” ์ด์ œ ๋ฏธ๋ถ„์˜ ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ๋” ์ •ํ™•ํžˆ ๋งํ•˜์ž๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•  ๊ฒƒ์€ ๋ฏธ๋ถ„ํ˜•์‹์˜ ๊ฐœ๋…์œผ๋กœ, ์ด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด์„œ๋Š” graded algebra๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์•ž์œผ๋กœ graded algebra์˜ ๊ตฌ์กฐ๋ฅผ ์ฃผ๋Š” abelian group์„ $\Delta$๋กœ ํ‘œ๊ธฐํ•˜๊ธฐ๋กœ ํ•œ๋‹ค.

์ •์˜ 1 Abelian group $(\Delta, +, 0)$์— ๋Œ€ํ•˜์—ฌ, ํ•จ์ˆ˜ $\varepsilon : \Delta \times \Delta \to \{ \pm 1 \}$๊ฐ€ ๋‹ค์Œ์˜ ์„ธ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•œ๋‹ค ํ•˜์ž.

  • $\varepsilon(\alpha + \alphaโ€™, \beta) = \varepsilon(\alpha, \beta)\varepsilon(\alphaโ€™, \beta)$
  • $\varepsilon(\alpha, \beta + \betaโ€™) = \varepsilon(\alpha, \beta)\varepsilon(\alpha, \betaโ€™)$
  • $\varepsilon(\beta, \alpha) = \varepsilon(\alpha, \beta)$

์ด ๋•Œ, $\varepsilon$์„ commutation factor๋ผ ๋ถ€๋ฅธ๋‹ค.

๊ทธ๋Ÿผ ํŠนํžˆ $\varepsilon(2.\alpha, \beta) = \varepsilon(\alpha, 2.\beta) = 1$์ด๋‹ค.

์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์žฅ ๊ด€์‹ฌ์žˆ๋Š” ์˜ˆ์‹œ๋Š” $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ์ด๋‹ค. ์ด ๊ฒฝ์šฐ, ์ •์˜ 1์— ์˜ํ•˜์—ฌ $\varepsilon$์€ $\varepsilon(1,1)$์—์„œ์˜ ๊ฐ’์— ์˜ํ•ด ์™„์ „ํ•˜๊ฒŒ ๊ฒฐ์ •๋˜๋ฉฐ, ๋”ฐ๋ผ์„œ $\Delta=\mathbb{Z}$์— ์ •์˜๋˜๋Š” commutation factor๋Š” ์˜ค์ง

\[\varepsilon(p,q)=1,\qquad \varepsilon(p,q)=(-1)^{pq}\]

๋ฟ์ด๋‹ค. Commutation factor๋Š” degree $p$์™€ degree $q$์˜ ์›์†Œ์˜ ๊ณฑ์„ ์ƒ๊ฐํ•  ๋•Œ, ์ด๋“ค์ด ์„œ๋กœ ์ˆœ์„œ๋ฅผ ๋ฐ”๊ฟ€ ๋•Œ ์ƒ๊ฒจ๋‚˜๋Š” ๋ถ€ํ˜ธ๋กœ์จ ๋“ฑ์žฅํ•  ๊ฒƒ์ด๋‹ค.

์ด์ œ commutative ring $A$, $\Delta$-graded $A$-module $E$, $Eโ€™$, $Eโ€™โ€™$, $F$, $Fโ€™$, $Fโ€™โ€™$$A$-bilinear map๋“ค

\[\mu: E \times E' \to E'', \qquad \lambda_1: F \times E' \to F', \qquad \lambda_2: E \times F' \to F''\]

๊ทธ๋ฆฌ๊ณ  ์ด๋“ค์ด ์œ ๋„ํ•˜๋Š” $A$-linear map๋“ค

\[E \otimes_A E' \to E'', \qquad F \otimes_A E' \to F'', \qquad E \otimes_A F' \to F''\]

์„ ์ƒ๊ฐํ•˜๊ณ , ์ด ์„ธ $A$-linear map๋“ค์ด ๋ชจ๋‘ degree $0$ graded homomorphism์ด๋ผ ํ•˜์ž. ์ด๋“ค์€ ๊ฐ๊ฐ ๊ณฑ์…ˆ์— ํ•ด๋‹นํ•˜๋Š” ์—ฐ์‚ฐ๋“ค๋กœ, ์šฐ๋ฆฌ๋Š” ๊ฐ€๋ น $x\otimes xโ€™$์˜ $Eโ€™โ€˜$์—์„œ์˜ image๋ฅผ ๊ฐ„๋‹จํžˆ $xxโ€™$๋กœ ์ ์„ ๊ฒƒ์ด๋‹ค. $E\otimes_A Eโ€™$์—์„œ ์›์†Œ $x\otimes xโ€™$๋Š” degree $\degree(x)+\degree(xโ€™)$์— ์žˆ์œผ๋ฏ€๋กœ, ์œ„์™€ ๊ฐ™์€ ๊ฐ€์ •์—์„œ $xxโ€™$๋Š” $Eโ€™โ€˜$์˜ degree $\degree(x)+\degree(xโ€™)$ ์„ฑ๋ถ„์— ์žˆ๊ฒŒ ๋œ๋‹ค.

์ด์ œ ๋‹ค์Œ์„ ์ •์˜ํ•œ๋‹ค.

์ •์˜ 2 ์œ„์˜ ์ƒํ™ฉ์— ๋”ํ•ด commutation factor $\varepsilon: \Delta \times \Delta \to \{ \pm 1 \}$์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๊ทธ๋Ÿผ $(E, Eโ€™, Eโ€™โ€™)$์—์„œ $(F, Fโ€™, Fโ€™โ€™)$๋กœ ๊ฐ€๋Š” degree $\delta$์˜ $(A, \varepsilon)$-derivation$(A,\varepsilon)$-๋ฏธ๋ถ„ ํ˜น์€ ๊ฐ„๋‹จํžˆ $\varepsilon$-derivation์€ ๋‹ค์Œ์˜ ์กฐ๊ฑด

\[d''(xx') = (dx)x' + \varepsilon(\delta, \deg(x))x(d'x')\]

์„ ๋งŒ์กฑํ•˜๋Š” graded $A$-module homomorphism๋“ค์˜ triple $d: E \rightarrow F$, $dโ€™: Eโ€™ \rightarrow Fโ€™$, $dโ€™โ€™: Eโ€™โ€™ \rightarrow Fโ€™โ€˜$์ด๋‹ค. ๋งŒ์ผ $\varepsilon$์ด ํ•ญ์ƒ $1$์ด ๋˜์–ด, ์œ„์˜ ์‹์—์„œ $\varepsilon$์„ ์—†์•จ ์ˆ˜ ์žˆ๋‹ค๋ฉด $(d,dโ€™,dโ€™โ€™)$๋ฅผ ๊ฐ„๋‹จํžˆ derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

์œ„์˜ ์ •์˜์—์„œ ํ˜ผ๋™์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ•ญ๋“ค์ด ์–ด๋””์— ์†ํ•˜๋Š”์ง€, ๊ฐ€๋ น ์šฐ๋ณ€์˜ $(dx)xโ€™$๋Š” $dx\in F$์™€ $xโ€™\in Eโ€™$๋ฅผ $\lambda_1$์— ์˜ํ•ด ๊ณฑํ•˜์—ฌ ์–ป์€ $Fโ€™โ€˜$์˜ ์›์†Œ๋ผ๋Š” ๊ฒƒ ๋“ฑ์„ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ๋„ ์ข‹๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ๋Š” ์šฐ๋ฆฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠน๋ณ„ํ•œ ๋‘ ๊ฒฝ์šฐ์— ๊ด€์‹ฌ์ด ์žˆ๋‹ค.

  1. $E=F$, $Eโ€™=Fโ€™$, $Eโ€™โ€˜=Fโ€™โ€™$, ๊ทธ๋ฆฌ๊ณ  ์„ธ ๊ฐœ์˜ bilinear map $ \mu, \lambda_1, \lambda_2 $๊ฐ€ ๋ชจ๋‘ ๋™์ผํ•œ ๊ฒฝ์šฐ
  2. $E=Eโ€™=Eโ€™โ€™$, $F=Fโ€™=Fโ€™โ€˜$์ด๊ณ , ๋”ฐ๋ผ์„œ $\mu:E\otimes_A E \rightarrow E$์— ์˜ํ•ด $E$๊ฐ€ graded algebra๊ฐ€ ๋˜๋ฉฐ,

    \[\lambda_1: F \otimes_A E \to F, \qquad \lambda_2: E \otimes_A F \to F\]

    ์ธ ๊ฒฝ์šฐ. ์ด ๊ฒฝ์šฐ, ์ž„์˜์˜ $x,y\in E$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

    \[d(xy)=(dx)y+\varepsilon(\delta, \deg(x))x(dy)\]

    ์„ ๋งŒ์กฑํ•˜๋Š” ๋‹จ์ผํ•œ $d:E \rightarrow F$๋ฅผ $E$์—์„œ $F$๋กœ์˜ $\varepsilon$-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ๋ฅผ motivation ์‚ผ์•„ ์šฐ๋ฆฌ๋Š” ํ‘œ๊ธฐ์˜ ํŽธ์˜์ƒ $d, dโ€™, dโ€™โ€˜$๋ฅผ ๋ชจ๋‘ ๊ฐ™์€ ๋ฌธ์ž $d$๋กœ ํ†ต์ผํ•˜์—ฌ ์“ฐ๊ธฐ๋„ ํ•˜๋ฉฐ, ๊ทธ๋Ÿผ ์ •์˜ 2์˜ ์‹์€

\[d(xx')=(dx)x'+\varepsilon(\delta,\deg(x))x (dx)\]

๋กœ ์“ธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์—์„œ๋Š” ์ด ์ •๋„ ํ‘œ๊ธฐ๋ฒ•์˜ ๋‚จ์šฉ์€ ํ˜ผ๋™์„ ์ฃผ์ง€ ์•Š์„ ๊ฒƒ์ด๋‹ค.

๋งŒ์ผ ์œ„์˜ ๋‘ ๊ฒฝ์šฐ๊ฐ€ ๋ชจ๋‘ ์„ฑ๋ฆฝํ•˜์—ฌ $E=Eโ€™=Eโ€™โ€˜=F=Fโ€™=Fโ€™โ€˜$์ด๊ณ  $\lambda_1, \lambda_2$๊ฐ€ $E$์—์„œ์˜ ๊ณฑ์…ˆ์ด๋ฉฐ, derivation์ด ๋‹จ์ผํ•œ graded endomorphism $d: E \rightarrow E$์ธ ๊ฒฝ์šฐ๊ฐ€ ๊ฐ€์žฅ ๋งŽ์ด ๋“ฑ์žฅํ•œ๋‹ค. ๊ทธ๋Ÿผ $\varepsilon$-derivation์€ $A$์—์„œ $A$๋กœ ๊ฐ€๋Š” ํ•จ์ˆ˜๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ด ๊ฒฝ์šฐ ์šฐ๋ฆฌ๋Š” $\varepsilon$-derivation์„ ๊ฐ„๋‹จํžˆ $A$์˜ $\varepsilon$-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

ํ•œํŽธ ์šฐ๋ฆฌ๋Š” ์•ž์—์„œ $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ๊ฐ€ ์šฐ๋ฆฌ์˜ ์ฃผ๋œ ๊ด€์‹ฌ์‚ฌ๋ผ ํ•˜์˜€๋Š”๋ฐ, ์ด ๊ฒฝ์šฐ non-trivialํ•œ commutation factor $\varepsilon(p,q)=(-1)^{pq}$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด, ์ด $\varepsilon$์— ๋Œ€ํ•˜์—ฌ ์ž„์˜์˜ ์ง์ˆ˜ ์ฐจ์ˆ˜ $\varepsilon$-derivation์€ ํ•ญ์ƒ $\varepsilon$์˜ ์˜ํ–ฅ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•ˆ๋‹ค. ํ™€์ˆ˜ ์ฐจ์ˆ˜์˜ ๊ฒฝ์šฐ, ์ž„์˜์˜ homogeneous element $x\in E$์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์˜ ์‹

\[d(xx')=(dx)x'+(-1)^{\deg x}x(dx')\]

์ด ์„ฑ๋ฆฝํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ $d$๋ฅผ anti-derivation์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

๋ฏธ๋ถ„ํ˜•์‹

์ง€๊ธˆ๊นŒ์ง€์˜ ๋…ผ์˜๊ฐ€ ์–ด๋–ป๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์•Œ๊ธฐ ์œ„ํ•ด, ์ž ์‹œ ๊ฐ„๋‹จํ•˜๋ฉด์„œ ํ•ต์‹ฌ์ ์ธ ์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณด์ž. $\mathbb{k}$๋ฅผ field๋ผ ํ•˜๊ณ , polynomial algebra $A=\mathbb{k}[\x_1,\ldots, \x_n]$์„ ์ƒ๊ฐํ•˜์ž. ์ด์ œ free $A$-module $M$์„ ๋‹ค์Œ์˜ ์›์†Œ๋“ค

\[d\x_1,d\x_2,\ldots, d\x_n\]

๋กœ ์ƒ์„ฑ๋˜๋„๋ก ์žก๊ณ  exterior algebra $\bigwedge(M)$์„ ์ƒ๊ฐํ•˜๋ฉด ์ด exterior algebra๋Š”

\[\bigwedge(M)=\bigoplus_{d=0}^n{\bigwedge}^d(M)\]

์œผ๋กœ ์ฃผ์–ด์ง€๋ฉฐ, ์ด ๋•Œ $\bigwedge^0(M)=A$์ด๊ณ  ๊ฐ๊ฐ์˜ $d$์— ๋Œ€ํ•˜์—ฌ $\bigwedge^d(M)$์€

\[e_J=e_{j_1}\wedge e_{j_2}\wedge\cdots\wedge e_{j_d},\qquad j_1<\cdots< j_d\]

์˜ ๊ผด๋กœ ์ƒ์„ฑ๋˜๋Š” free $A$-module์ด๋‹ค.

Bracket

ํ•œํŽธ, ์œ„์˜ ๋‘ ๊ฒฝ์šฐ ์ค‘ ์ฒซ์งธ ์กฐ๊ฑด์ด ์„ฑ๋ฆฝํ•œ๋‹ค ๊ฐ€์ •ํ•˜์ž. ๊ทธ๋Ÿผ $d=(d,dโ€™,dโ€™โ€™)$์€ $(E,Eโ€™,Eโ€™โ€™)$์—์„œ ์ž๊ธฐ์ž์‹ ์œผ๋กœ์˜ ํ•จ์ˆ˜๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, $\varepsilon$-derivation๋“ค์˜ ํ•ฉ์„ฑ ๋˜ํ•œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์œผ๋กœ ์ •์˜ 2์˜ ์‹์„ ๋ณด๋ฉด, ์ž„์˜๋กœ ์ฃผ์–ด์ง„ ๋‘ degree $\delta_1$, $\delta_2$์˜ $\varepsilon$-derivation $d_1,d_2$์™€ ์ž„์˜์˜ $x\in E$, $xโ€™\in Eโ€™$์— ๋Œ€ํ•˜์—ฌ

\[\begin{aligned}(d_2\circ d_1)(xx')&=d_2((d_1x)x'+\varepsilon(\delta_1, \deg(x))x(d_1'x'))\\&=(d_2d_1x)x'+\varepsilon(\delta_2,\deg(d_1x))(d_1x)(d_2'x')+\varepsilon(\delta_1, \deg(x))(d_2x)(d_1'x')+\varepsilon(\delta_1, \deg(x))\varepsilon(\delta_2, \deg(x))x(d_2' d_1'x')\end{aligned}\]

์ด๋ฏ€๋กœ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ์—์„œ $\varepsilon$-derivation๋“ค์˜ ํ•ฉ์„ฑ์€ $\varepsilon$-derivation์ด ์•„๋‹ˆ๋‹ค. ์ฆ‰, ์ผ๋ฐ˜์ ์œผ๋กœ $\Delta$-graded $A$-module๋“ค์˜ triple๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ category๋ฅผ ์ƒ๊ฐํ•˜๊ณ , ๊ณ ์ •๋œ triple $(E,Eโ€™,Eโ€™โ€™)$์˜ endomorphism algebra

\[\End_{\bgr_\Delta \Alg{A}^3}(E, E', E'')\]

๋ฅผ ์ƒ๊ฐํ•˜๋ฉด, $\varepsilon$-derivation๋“ค์˜ ๋ชจ์ž„์€ ์ด endomorphism algebra์˜ subalgebra๋ฅผ ์ •์˜ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ๊ณ„์‚ฐ์„ ์‚ดํŽด๋ณธ๋‹ค๋ฉด, ์ด ์œ„์— ์–ด๋– ํ•œ ์ข…๋ฅ˜์˜ ๊ณฑ์…ˆ์„ ์ •์˜ํ•ด์•ผ $\varepsilon$-derivation๋“ค์˜ ๋ชจ์ž„์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋„ ๋ช…ํ™•ํ•˜๋‹ค. ์ฆ‰ ์šฐ๋ณ€์˜ ๋„ค ํ•ญ ์ค‘, ๊ฐ€์šด๋ฐ์˜ ๋‘ ํ•ญ์„ ์—†์• ์ฃผ๋ฉด $d_2d_1$์ด degree $\delta_1+\delta_2$์˜ $\varepsilon$-derivation์ด ๋  ๊ฒƒ์ด๋‹ค.

์ด๋ฅผ ์œ„ํ•ด ์šฐ์„  ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์œผ๋กœ ์ž„์˜์˜ $\Delta$-graded algebra $G$์™€ ๊ณ ์ •๋œ commutation factor $\varepsilon$์— ๋Œ€ํ•˜์—ฌ, $G$์˜ ๋‘ homogeneous element $x,y$์— ๋Œ€ํ•˜์—ฌ ์ด๋“ค์˜ $\varepsilon$-bracket์„ ๋‹ค์Œ์˜ ์‹

\[[x,y]_\varepsilon=xy-\varepsilon(\deg(x),\deg(y))yx\]

์œผ๋กœ ์ •์˜ํ•˜์ž. ๊ทธ๋Ÿผ ์ด๋ฅผ ํ†ตํ•ด $G=\End_{\bgr_\Delta \Alg{A}^3}(E, Eโ€™, Eโ€™โ€™)$์—์„œ์˜ $\varepsilon$-bracket์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ช…์ œ 3 $d_1, d_2$๋ฅผ $(E, Eโ€™, Eโ€™โ€™)$ ์œ„์˜ $\varepsilon$-derivation๋“ค์ด๋ผ ํ•˜์ž. ๊ฐ๊ฐ์˜ degree๋ฅผ $\delta_1$, $\delta_2$๋ผ ํ•˜๋ฉด, ์ด๋“ค์˜ $\varepsilon$-bracket

\[[d_1, d_2]_\varepsilon = d_1 \circ d_2 - \varepsilon_{\delta_1, \delta_2} \, d_2 \circ d_1\]

์€ degree $\delta_1 + \delta_2$๋ฅผ ๊ฐ–๋Š” ๋˜ ๋‹ค๋ฅธ $\varepsilon$-derivation์ด ๋œ๋‹ค. ํŠนํžˆ, ๋งŒ์ผ $d$๊ฐ€ degree $\delta$๋ฅผ ๊ฐ–๋Š” $\varepsilon$-derivation์ด๊ณ , $\varepsilon_{\delta, \delta} = -1$์ด๋ผ๋ฉด, $d^2 = d \circ d$๋Š” derivation์ด๋‹ค.

์ด์— ๋Œ€ํ•œ ์ฆ๋ช…์€ ์•ž์—์„œ ๊ณ„์‚ฐํ•œ $(d_2\circ d_1)(xxโ€™)$์˜ ์ „๊ฐœ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์ž๋ช…ํ•˜๋‹ค.

๊ทธ๋Ÿผ ํŠนํžˆ $\Delta=\mathbb{Z}$์ธ ๊ฒฝ์šฐ๋กœ ํ•œ์ •์ง€์œผ๋ฉด, ์œ„์˜ ๋ช…์ œ๋Š” ๋‹ค์Œ์˜ ๋”ฐ๋ฆ„์ •๋ฆฌ๋ฅผ ๊ฐ–๋Š”๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 4 $\Delta = \mathbb{Z}$๋ผ ํ•˜์ž. ์ด๋•Œ ๋‹ค์Œ์ด ์„ฑ๋ฆฝํ•œ๋‹ค:

  1. Antiderivation์˜ ์ œ๊ณฑ์€ derivation์ด๋‹ค.
  2. ๋‘ derivation์˜ bracket์€ derivation์ด๋‹ค.
  3. antiderivation๊ณผ ์ง์ˆ˜ ์ฐจ์ˆ˜ derivation์˜ bracket์€ antiderivation์ด๋‹ค.
  4. $d_1$, $d_2$๊ฐ€ antiderivation์ด๋ฉด, $d_1 d_2 + d_2 d_1$์€ derivation์ด๋‹ค.

๋Œ“๊ธ€๋‚จ๊ธฐ๊ธฐ