ํ˜ธ๋ชฐ๋กœ์ง€ ๋Œ€์ˆ˜ํ•™์€ ๋ง ๊ทธ๋Œ€๋กœ chain complex๋“ค์ด ์ฃผ์–ด์กŒ์„ ๋•Œ ์ด๋“ค์˜ ํ˜ธ๋ชฐ๋กœ์ง€๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ทธ ์„ฑ์งˆ์„ ์‚ดํŽด๋ณด๋Š” ํ•™๋ฌธ์ด๋‹ค. ([๋ฒ”์ฃผ๋ก ] ยง์•„๋ฒจ ์นดํ…Œ๊ณ ๋ฆฌ, โ‹์ •์˜ 4) Chain complex๋Š” ์ž„์˜์˜ abelian category์—์„œ ์ •์˜๋˜์ง€๋งŒ, Freyd-Mitchell embedding theorem์— ์˜ํ•ด ์ด๋“ค์€ ๋ชจ๋‘ ์ ๋‹นํ•œ $\lMod{A}$์˜ full subcategory๋กœ embed๋  ์ˆ˜ ์žˆ๋‹ค. ([๋ฒ”์ฃผ๋ก ] ยง์•„๋ฒจ ์นดํ…Œ๊ณ ๋ฆฌ, โ‹์ •๋ฆฌ 9)

์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ํ˜ธ๋ชฐ๋กœ์ง€ ๋Œ€์ˆ˜๋ฅผ ํ•  ๋•Œ ํ•„์ˆ˜์ ์ธ ๋ณด์กฐ์ •๋ฆฌ์ธ 5ํ•ญ ๋ณด์กฐ์ •๋ฆฌ์™€ ๋ฑ€ ๋ณด์กฐ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…ํ•œ๋‹ค. ์ด๋“ค์˜ ์ฆ๋ช…์€ kernel๊ณผ cokernel์˜ universal property๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ์ด๋Š” ์ฆ๋ช…์„ ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๊ธธ๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์šฐ๋ฆฌ๋Š” ๋ชจ๋“  ์ฆ๋ช…์„ $\lMod{A}$์—์„œ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๊ฐ ๋Œ€์ƒ๋“ค์—์„œ ์›์†Œ๋ฅผ ๋ฝ‘์•„์˜ฌ ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ฆ๋ช…์„ diagram chasing์ด๋ผ ๋ถ€๋ฅด๋ฉฐ, ์ž„์˜์˜ abelian category ๋Œ€์‹  $\lMod{A}$์—์„œ ์ฆ๋ช…์„ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์œ„์—์„œ ์–ธ๊ธ‰ํ•œ Freyd-Mitchell embedding theorem์— ์˜ํ•ด ์ •๋‹นํ™”๋  ์ˆ˜ ์žˆ๋‹ค.

5ํ•ญ ๋ณด์กฐ์ •๋ฆฌ

๋ช…์ œ 1 (The four lemma) ๊ฐ ํ–‰๋“ค์ด exact์ธ commutative diagram

Four_lemma

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜๊ณ , $\alpha$๊ฐ€ ์ „์‚ฌ์ด๊ณ , $\delta$๊ฐ€ ๋‹จ์‚ฌ๋ผ ๊ฐ€์ •ํ•˜์ž. ๊ทธ๋Ÿผ

  1. ๋งŒ์ผ $\gamma$๊ฐ€ ์ „์‚ฌ๋ผ๋ฉด $\beta$ ๋˜ํ•œ ์ „์‚ฌ์ด๋‹ค.
  2. ๋งŒ์ผ $\beta$๊ฐ€ ๋‹จ์‚ฌ๋ผ๋ฉด $\gamma$ ๋˜ํ•œ ๋‹จ์‚ฌ์ด๋‹ค.
์ฆ๋ช…
  1. ์ž„์˜์˜ $bโ€™\in Bโ€™$๋ฅผ ํƒํ•˜์ž. ์šฐ๋ฆฌ๋Š” ์ ๋‹นํ•œ $b\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $\beta(b)=bโ€™$์ž„์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค. ๊ฐ€์ •์— ์˜ํ•ด $\gamma$๋Š” ์ „์‚ฌ์ด๋ฏ€๋กœ, ์ ๋‹นํ•œ $c\in C$๊ฐ€ ์กด์žฌํ•˜์—ฌ $\gamma(c)=gโ€™(bโ€™)\in Cโ€™$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ์ด์ œ

    \[\delta(h(c))=h'(\gamma(c))=h'(g'(b'))=0\]

    ์ด๋ฏ€๋กœ $h(c)\in\ker\delta$์ด๊ณ , $\delta$๋Š” ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $h(c)=0$์ด๋‹ค. ์ฆ‰, $c\in\ker(h)=\im(g)$์ด๋ฏ€๋กœ ์ ๋‹นํ•œ $b_0\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $g(b_0)=c$์ด๋‹ค. ์ด์ œ ์ด๋Ÿฌํ•œ $b_0$์— ๋Œ€ํ•˜์—ฌ, $bโ€™-\beta(b_0)\in Bโ€™$๋ฅผ ์ƒ๊ฐํ•˜์ž. ๊ทธ๋Ÿผ

    \[g'(b'-\beta(b_0))=g'(b')-g'(\beta(b_0))=\gamma(c)-\gamma(g(b_0))=\gamma(c)-\gamma(c)=0\]

    ์ด๋ฏ€๋กœ, $bโ€™-\beta(b_0)\in\ker(gโ€™)=\im(fโ€™)$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ ๋‹นํ•œ $aโ€™\in Aโ€™$๊ฐ€ ์กด์žฌํ•˜์—ฌ $fโ€™(aโ€™)=bโ€™-\beta(b_0)$์ด๋‹ค. $\alpha$๋Š” ์ „์‚ฌ์ด๋ฏ€๋กœ, $\alpha(a)=aโ€™$๋ฅผ ๋งŒ์กฑํ•˜๋Š” $a\in A$๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๊ทธ๋Ÿผ

    \[\beta(f(a))=f'(\alpha(a))=f'(a')=b'-\beta(b_0)\]

    ์ด๊ณ , ๋”ฐ๋ผ์„œ $b=b_0+f(a)$๋ผ ํ•˜๋ฉด $\beta(b)=bโ€™$์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

  2. ์–ด๋–ค $c\in C$๊ฐ€ $\gamma(c)=0$์„ ๋งŒ์กฑํ•œ๋‹ค ํ•˜์ž. ์šฐ๋ฆฌ๋Š” $c=0$์ž„์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค. ์šฐ์„ 

    \[0=h'(0)=h'(\gamma(c))=\delta(h(c))\]

    ์ด๊ณ , $\delta$๋Š” ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $h(c)=0$์ž„์„ ์•ˆ๋‹ค. ์ฆ‰ $c\in\ker(h)=\im(g)$์ด๋ฏ€๋กœ, ์ ๋‹นํ•œ $b_0\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $g(b_0)=c$์ด๋‹ค. ์ด์ œ $Bโ€™$์˜ ์›์†Œ $\beta(b_0)$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด,

    \[g'(\beta(b_0))=\gamma(g(b_0))=\gamma(c)=0\]

    ์ด๋ฏ€๋กœ, $\beta(b_0)\in\ker(gโ€™)=\im(fโ€™)$์ด ์„ฑ๋ฆฝํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ ๋‹นํ•œ $aโ€™\in Aโ€™$๊ฐ€ ์กด์žฌํ•˜์—ฌ $fโ€™(aโ€™)=\beta(b_0)$์ด๊ณ , $\alpha$๋Š” ์ „์‚ฌ์ด๋ฏ€๋กœ $\alpha(a)=aโ€™$๋ฅผ ๋งŒ์กฑํ•˜๋Š” $a\in A$๋„ ์กด์žฌํ•œ๋‹ค. ์ด์ œ $b=b_0-f(a)$๋ผ ํ•˜์ž. ๊ทธ๋Ÿผ

    \[g(b)=g(b_0-f(a))=g(b_0)-g(f(a))=g(b_0)=c\]

    ์ด๋‹ค. ํ•œํŽธ,

    \[\beta(b)=\beta(b_0-f(a))=\beta(b_0)-\beta(f(a))=\beta(b_0)-f'(\alpha(a))=\beta(b_0)-f'(a')=\beta(b_0)-\beta(b_0)=0\]

    ์ด๋ฏ€๋กœ $b\in\ker(\beta)$์ด๊ณ , $\beta$๋Š” ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $b=0$๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ $c=g(b)=0$์ด๊ณ , $\gamma$๋Š” ๋‹จ์‚ฌ์ด๋‹ค.

์œ„์˜ ๋ช…์ œ๋Š” ๋‹ค์Œ์˜ ์ž๋ช…ํ•œ ๋‘ ๋”ฐ๋ฆ„์ •๋ฆฌ๋ฅผ ๊ฐ–๋Š”๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 2 (The five lemma) ๊ฐ ํ–‰์ด exact์ธ commutative diagram

five_lemma

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๋งŒ์ผ $\alpha,\beta,\delta,\epsilon$์ด ๋ชจ๋‘ ์ „๋‹จ์‚ฌ๋ผ๋ฉด, $\gamma$ ๋˜ํ•œ ์ „๋‹จ์‚ฌ์ด๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 3 (The short five lemma) ๊ฐ ํ–‰์ด exact์ธ commutative diagram

short_five_lemma

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๋งŒ์ผ $\alpha,\gamma$๊ฐ€ ๋ชจ๋‘ ๋‹จ์‚ฌ๋ผ๋ฉด $\beta$๋„ ๋‹จ์‚ฌ์ด๊ณ , $\alpha,\gamma$๊ฐ€ ๋ชจ๋‘ ์ „์‚ฌ๋ผ๋ฉด $\beta$๋„ ์ „์‚ฌ์ด๋‹ค.

๋ฑ€ ๋ณด์กฐ์ •๋ฆฌ

๋‚จ์€ ๊ธ€์—์„œ ์šฐ๋ฆฌ์˜ ์ฃผ๋œ ๋ชฉํ‘œ๋Š” ๋ฑ€ ๋ณด์กฐ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์ธ๋ฐ, ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‘ ๊ฐœ์˜ ๋ณด์กฐ์ •๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

๋ณด์กฐ์ •๋ฆฌ 4 Commutative square

induced_morphism

๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๊ทธ๋Ÿผ $\xi$๋Š” $\ker(h)$๋ฅผ $\ker(hโ€™)$๋กœ, $\eta$๋Š” $\im(h)$๋ฅผ $\im(hโ€™)$๋กœ ๋ณด๋‚ด๋ฉฐ, ํŠนํžˆ ๋‹ค์Œ์˜ ํ•จ์ˆ˜๋“ค

\[\xi^\sharp:\ker(h)\rightarrow\ker(h'),\quad \eta^\sharp:\im(h)\rightarrow\im(h'),\quad\xi^\ast:X/\ker(h)\rightarrow X'/\ker(h'),\quad \eta^\ast:\coker(h)\rightarrow\coker(h')\]

์ด ์ž˜ ์ •์˜๋œ๋‹ค.

์ฆ๋ช…

$i:\ker(h)\rightarrow X$์™€ $\xi$์˜ ํ•ฉ์„ฑ $\xi\circ i:\ker h\rightarrow Xโ€™$๋ฅผ ์ƒ๊ฐํ•˜์ž. ๊ทธ๋Ÿผ

\[h'\circ(\xi\circ i)=(\eta\circ h)\circ i=\eta\circ 0=0\]

์ด๋ฏ€๋กœ, kernel์˜ universal property๋กœ๋ถ€ํ„ฐ ์œ ์ผํ•œ $\xi^\sharp:\ker(h)\rightarrow\ker(hโ€™)$๊ฐ€ ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•ˆ๋‹ค.

induced_morphism_kernel

๋น„์Šทํ•˜๊ฒŒ $pโ€™\circ\eta:Y\rightarrow \coker (hโ€™)$๋กœ๋ถ€ํ„ฐ,

\[(p'\circ\eta)\circ h=p'\circ(h'\circ\xi)=(p'\circ h')\circ\xi=0\circ\xi=0\]

์ด๊ณ , $\coker(h)$์˜ universal property๋กœ๋ถ€ํ„ฐ $\eta^\ast$๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

induced_morphism_cokernel

์ •์˜์— ์˜ํ•ด $\coker(h)=Y/\im(h), \coker(hโ€™)=Yโ€™/\im(hโ€™)$์ด๋ฏ€๋กœ, $\eta^\ast$๊ฐ€ $0$์„ $0$์œผ๋กœ ๋ณด๋‚ด๋Š” ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ $\eta^\sharp$ ๋˜ํ•œ ์ž˜ ์ •์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ $\xi^\ast$์˜ ๊ฒฝ์šฐ, $p:Xโ€™\rightarrow Xโ€™/\ker(hโ€™)$๋ฅผ ์ƒ๊ฐํ•˜๋ฉด

\[\ker(h)\subseteq\ker(p\circ\xi)\]

์ด๊ณ , ๋”ฐ๋ผ์„œ $p\circ\xi$๊ฐ€ $\xi^\ast:X/\ker(h)\rightarrow Xโ€™/\ker(hโ€™)$๋ฅผ ์œ ๋„ํ•œ๋‹ค. (<#ref#>)

์ด๋ฅผ ์ด์šฉํ•˜๋ฉด ๋‹ค์Œ ๋ณด์กฐ์ •๋ฆฌ๋ฅผ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค.

๋ณด์กฐ์ •๋ฆฌ 5 ๊ฐ ํ–‰์ด exact์ธ commutative diagram

induced_exact_sequence

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๊ทธ๋Ÿผ $f,g$์™€ $fโ€™,gโ€™$๋Š” ๊ฐ๊ฐ ๋‹ค์Œ์˜ ๋‘ ์—ด

\[\ker(\alpha)\rightarrow\ker(\beta)\rightarrow\ker(\gamma),\qquad \coker(\alpha)\rightarrow\coker(\beta)\rightarrow\coker(\gamma)\]

๋ฅผ ์œ ๋„ํ•œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, $fโ€™:Aโ€™\rightarrow Bโ€™$๊ฐ€ ๋‹จ์‚ฌ๋ผ๋ฉด ์ฒซ์งธ ์—ด์ด exact๊ฐ€ ๋˜๊ณ , $g:B\rightarrow C$๊ฐ€ ์ „์‚ฌ๋ผ๋ฉด ๋‘˜์งธ ์—ด์ด exact๊ฐ€ ๋œ๋‹ค.

์ฆ๋ช…

$f,g$์™€ $fโ€™,gโ€™$์ด ๊ฐ๊ฐ ์ฃผ์–ด์ง„ ๋‘ ๊ฐœ์˜ ์—ด

\[\ker(\alpha)\overset{f^\sharp}{\longrightarrow}\ker(\beta)\overset{g^\sharp}{\longrightarrow}\ker(\gamma),\qquad \coker(\alpha)\overset{(f')^\ast}{\longrightarrow}\coker(\beta)\overset{(g')^\ast}{\longrightarrow}\coker(\gamma)\]

์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์€ ๋ณด์กฐ์ •๋ฆฌ 4์˜ ๊ฒฐ๊ณผ์ด๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, $i_A, i_B, i_C$๋ฅผ ๊ฐ๊ฐ kernel๋“ค์—์„œ $A,B,C$๋กœ์˜ ์ž๋ช…ํ•œ ํ•จ์ˆ˜๋“ค์ด๋ผ ํ•˜๋ฉด

\[i_C\circ g^\sharp\circ f^\sharp=g\circ i_B\circ f^\sharp=g\circ f\circ i_A=0\]

์ด๊ณ , $i_C$๊ฐ€ ๋‹จ์‚ฌ์ธ ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ $g^\sharp\circ f^\sharp=0$์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋น„์Šทํ•˜๊ฒŒ $p_A,p_B,p_C$๋ฅผ ๊ฐ๊ฐ $A,B,C$์—์„œ cokernel๋“ค๋กœ์˜ ์ž๋ช…ํ•œ ํ•จ์ˆ˜๋“ค์ด๋ผ ํ•˜๋ฉด,

\[(g')^\ast\circ(f')^\ast\circ p_C=(g')^\ast\circ p_B\circ f=p_A\circ g'\circ f'=0\]

์ด๊ณ , $p_C$๊ฐ€ ์ „์‚ฌ์ธ ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ $(gโ€™)^\ast\circ(fโ€™)^\ast=0$์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ฃผ์–ด์ง„ ๋ช…์ œ๋ฅผ ๋ณด์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” $fโ€™:Aโ€™\rightarrow Bโ€™$๊ฐ€ ๋‹จ์‚ฌ๋ผ๋ฉด $\ker(g^\sharp)\subset\im(f^\sharp)$์ด๊ณ , $g:B\rightarrow C$๊ฐ€ ์ „์‚ฌ๋ผ๋ฉด $\ker((gโ€™)^\ast)\subset\im((fโ€™)^\ast)$์ž„์„ ๋ณด์ด๋ฉด ์ถฉ๋ถ„ํ•˜๋‹ค.

์šฐ์„  $fโ€™$๊ฐ€ ๋‹จ์‚ฌ๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž. ๋งŒ์ผ ์–ด๋–ค $b\in\ker(\beta)$์— ๋Œ€ํ•˜์—ฌ $g^\sharp(b)=0$์ด๋ผ๋ฉด, $g^\sharp$์˜ ์ •์˜์— ์˜ํ•ด $g(b)=0$์ด๊ณ  ๋”ฐ๋ผ์„œ $b\in\ker(g)=\im(f)$์ด๋‹ค. ๋”ฐ๋ผ์„œ ์–ด๋–ค $a\in A$๊ฐ€ ์กด์žฌํ•˜์—ฌ $f(a)=b$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ

\[(f'\circ\alpha)(a)=(\beta\circ f)(a)=\beta(f(a))=\beta(b)=0\]

์—์„œ, $fโ€™$๋Š” ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $a\in\ker(\alpha)$์ด๊ณ  $f(a)=f^\sharp(a)=b$๋กœ๋ถ€ํ„ฐ $b\in\im(f^\sharp)$์ด ๋œ๋‹ค.

์ด์ œ $g$๊ฐ€ ์ „์‚ฌ๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž. $bโ€™\in\coker(\beta)$๊ฐ€ $\ker((gโ€™)^\ast)$์˜ ์›์†Œ๋ผ ํ•˜์ž. ์ฆ‰ $((gโ€™)^\ast)(bโ€™)=gโ€™(bโ€™)+\im(\gamma)=0$์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ $gโ€™(bโ€™)\in\im(\gamma)$์ด๋ฏ€๋กœ, ์ ๋‹นํ•œ $c\in C$๊ฐ€ ์กด์žฌํ•˜์—ฌ $\gamma(c)=gโ€™(bโ€™)$์ด๊ณ , $g$๋Š” ์ „์‚ฌ์ด๋ฏ€๋กœ ์ ๋‹นํ•œ $b\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $g(b)=c$์ด๋‹ค. ์ด ๋•Œ

\[g'(b')=\gamma(c)=(\gamma\circ g)(b)=(g'\circ\beta)(b)\]

์ด๋ฏ€๋กœ, $bโ€™-\beta(b)\in\ker(gโ€™)=\im(fโ€™)$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ์ด์ œ $fโ€™(aโ€™)=bโ€™-\beta(b)$๋ฅผ ๋งŒ์กฑํ•˜๋Š” $aโ€™\in Aโ€™$๋ฅผ ํƒํ•˜์ž. ๊ทธ๋Ÿผ $fโ€™(aโ€™)-bโ€™\in\im(\beta)$์ด๋ฏ€๋กœ,

\[f'(a')+\im(\beta)=b'+\im(\beta)\]

์ด๊ณ  ๋”ฐ๋ผ์„œ

\[((f')^\ast)(a'+\im(\alpha))=b'+\im(\beta)\]

์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

์ด์ œ ๋“œ๋””์–ด snake lemma๋ฅผ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ •๋ฆฌ 6 (The snake lemma) ๊ฐ ํ–‰์ด exact์ธ commutative diagram

snake_diagram

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ์ด ๋•Œ, ์œ„์™€ ์•„๋ž˜์˜ ํ–‰์€ ๊ฐ๊ฐ exact์ด๋‹ค. ๊ทธ๋Ÿผ ๋ณด์กฐ์ •๋ฆฌ 5์—์„œ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๋‘ ๊ฐœ์˜ exact sequence

\[\ker(\alpha)\rightarrow\ker(\beta)\rightarrow\ker(\gamma),\qquad \coker(\alpha)\rightarrow\coker(\beta)\rightarrow\coker(\gamma)\]

๋ฅผ ์ž‡๋Š” $\delta:\ker(\gamma)\rightarrow\coker(\alpha)$๊ฐ€ ์กด์žฌํ•˜์—ฌ, ์ด๋ฅผ ํ†ตํ•ด ์ด์–ด์ง„ ๋‹ค์Œ์˜ ์—ด

\[\ker(\alpha)\rightarrow\ker(\beta)\rightarrow\ker(\gamma)\rightarrow\coker(\alpha)\rightarrow\coker(\beta)\rightarrow\coker(\gamma)\]

์ด exact sequence๋ฅผ ์ด๋ฃฌ๋‹ค.

์ฆ๋ช…

์ฆ๋ช…์„ ์œ„ํ•ด์„œ๋Š” $\delta$๋ฅผ ํ•˜๋‚˜ ๋งŒ๋“ค๊ณ , ์ดํ›„ ์œ„์˜ ์—ด์ด $\ker(\gamma)$์™€ $\coker(\alpha)$์—์„œ ๊ฐ๊ฐ exact์ž„์„ ๋ณด์ด๋ฉด ์ถฉ๋ถ„ํ•˜๋‹ค.

์šฐ์„  $c\in\ker(\gamma)$๋ฅผ ํ•˜๋‚˜ ํƒํ•˜์ž. ๊ทธ๋Ÿผ $g$๊ฐ€ ์ „์‚ฌ์ด๋ฏ€๋กœ, ์ ๋‹นํ•œ $b\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $g(b)=c$๊ฐ€ ์„ฑ๋ฆฝํ•˜๋ฉฐ, ์ด $b$๋Š” ๋‹ค์Œ์˜ ์‹

\[0=\gamma(c)=\gamma(g(b))=(\gamma\circ g)(b)=(g'\circ\beta)(b)=g'(\beta(b))\]

์„ ๋งŒ์กฑํ•œ๋‹ค. ์ฆ‰ $\beta(b)\in\ker(gโ€™)=\im(fโ€™)$์ด๋‹ค. ๋”ฐ๋ผ์„œ $fโ€™(aโ€™)=\beta(b)$์ด๋„๋ก ํ•˜๋Š” $aโ€™$๊ฐ€ ์œ ์ผํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ $aโ€™$์— ๋Œ€ํ•˜์—ฌ $\delta(c)=aโ€™+\im(\alpha)\in \coker(\alpha)$๋ผ ํ•˜์ž.

ํ•จ์ˆ˜ $delta$๊ฐ€ ์ž˜ ์ •์˜๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์œ„์˜ ํ•จ์ˆ˜๊ฐ’์ด $b$์˜ ์„ ํƒ์— ์˜์กดํ•˜์ง€ ์•Š์•„์•ผ ํ•œ๋‹ค. $g(b_1)=c$๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๋˜๋‹ค๋ฅธ $b_1\in B$๋ฅผ ํƒํ•˜๊ณ , ์œ„์™€ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ $fโ€™(a_1โ€™)=\beta(b_1)$์„ ๋งŒ์กฑํ•˜๋Š” $a_1โ€™\in Aโ€™$๋ฅผ ํƒํ•˜์ž. ๊ทธ๋Ÿผ

\[0=(g'\circ f')(a_1'-a_1)=(g'\circ \beta)(b_1-b)=(\gamma\circ g)(b_1-b)\]

์ด๋ฏ€๋กœ $b_1-b\in\ker(g)=\im(f)$์ด ์„ฑ๋ฆฝํ•œ๋‹ค. ์ด์ œ $f(a)=b_1-b$์ด๋„๋ก ํ•˜๋Š” $a\in A$๋ฅผ ์ฐพ์œผ๋ฉด,

\[f'(\alpha(a))=\beta(f(a))=\beta(b_1)-\beta(b)=f'(a_1'-a')\]

์ด๊ณ , $fโ€™$๊ฐ€ ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $\alpha(a)=a_1โ€™-aโ€™$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค. ์ฆ‰, $a_1โ€™\equiv aโ€™ \mod \im(\alpha)$์ด๊ณ , $\delta$๊ฐ€ ์ž˜ ์ •์˜๋œ๋‹ค. ์–ด๋ ต์ง€ ์•Š๊ฒŒ $\delta$๊ฐ€ $A$-module๋“ค ์‚ฌ์ด์˜ homomorphism์ž„์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค.

์ด๋ ‡๊ฒŒ ๋งŒ๋“  $\delta$๊ฐ€ ๋‹ค์Œ์˜ ์—ด

\[\ker(\beta)\rightarrow\ker(\gamma)\rightarrow\coker(\alpha)\rightarrow\coker(\beta)\]

์„ exact sequence๋กœ ๋งŒ๋“ ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค. ์šฐ์„  $b\in \ker(\beta)$๋ผ ํ•˜์ž. $\delta(g^\sharp(b))=aโ€™+\im(\alpha)$๋ผ ํ•˜๋ฉด $aโ€™$๋Š” ์‹ $fโ€™(aโ€™)=\beta(b)$์— ์˜ํ•˜์—ฌ ๊ฒฐ์ •๋˜๋Š”๋ฐ, $b\in\ker(\beta)$์ด๋ฏ€๋กœ $fโ€™(aโ€™)=0$์ด๊ณ , $fโ€™$๋Š” ๋‹จ์‚ฌ์ด๋ฏ€๋กœ $aโ€™=0$์ด์–ด์•ผ ํ•œ๋‹ค. ์ฆ‰ $\delta\circ g^\sharp=0$์ด๋‹ค. ์ด์™€ ๋น„์Šทํ•˜๊ฒŒ, ์ž„์˜์˜ $c\in\ker(\gamma)$์— ๋Œ€ํ•˜์—ฌ $\delta(c)=aโ€™+\im(\alpha)$๋ผ ํ•˜๋ฉด,

\[((f')^\ast)(a'+\im(\alpha))=f'(a')+\im(\beta)=\beta(b)+\im(\beta)=0\]

๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ $\ker(\delta)\subset\im(g^\sharp)$์ด๊ณ  $\ker(fโ€™)^\ast\subset\im(\delta)$์ด๋ผ๋Š” ๊ฒƒ๋งŒ ๋ณด์ด๋ฉด ์ถฉ๋ถ„ํ•˜๋‹ค.

์šฐ์„  $c\in\ker(\delta)$๋ผ ํ•˜์ž. ๊ทธ๋Ÿผ $aโ€™$๋Š” $g(b)=c$๋ฅผ ๋งŒ์กฑํ•˜๋Š” $b$์— ๋Œ€ํ•ด, ์‹ $fโ€™(aโ€™)=\beta(b)$๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์›์†Œ๋กœ ์ •์˜๋˜๋ฏ€๋กœ $aโ€™\in\im(\alpha)$์ด๋‹ค. ์ด์ œ $\alpha(a)=aโ€™$๋ฅผ ๋งŒ์กฑํ•˜๋Š” $a\in A$๋ฅผ ํƒํ•˜์ž. ๊ทธ๋Ÿผ

\[\beta(b)=f'(a')=f'(\alpha(a))=\beta(f(a))\]

์ด๋ฏ€๋กœ $b-f(a)\in\ker(\beta)$์ด๋‹ค. ์ด์ œ

\[g^\sharp(b-f(a))=g(b-f(a))=g(b)-g(f(a))=g(b)=c\]

์ด๋ฏ€๋กœ $c\in\im g^\sharp$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

๋น„์Šทํ•˜๊ฒŒ $aโ€™\in\ker(fโ€™)^\ast$๋ผ ํ•˜์ž. ๊ทธ๋Ÿผ $fโ€™(aโ€™)\in\im(\beta)$์ด๋ฏ€๋กœ ์ ๋‹นํ•œ $b\in B$๊ฐ€ ์กด์žฌํ•˜์—ฌ $\beta(b)=fโ€™(aโ€™)$๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ณ , ์ด $b$์— ๋Œ€ํ•˜์—ฌ

\[\gamma(g(b))=(g'\circ\beta)(b)=(g'\circ f')(a')=0\]

๊ฐ€ ์„ฑ๋ฆฝํ•˜๋ฏ€๋กœ $g(b)\in\ker(\gamma)$์ด๋‹ค. ๋”ฐ๋ผ์„œ $\delta(g(b))$๊ฐ€ ์ž˜ ์ •์˜๋˜๋ฉฐ, $b$๊ฐ€ ์ •ํ™•ํžˆ $fโ€™(aโ€™)=\beta(b)$๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์›์†Œ๋กœ ์ •์˜๋˜์—ˆ์œผ๋ฏ€๋กœ ์ด ๊ฐ’์€ ์ •ํ™•ํžˆ $aโ€™+\im(\alpha)$์™€ ๊ฐ™๋‹ค.

์ด ์ •๋ฆฌ๋ฅผ snake lemma๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒƒ์€ connecting map $\delta$๋ฅผ ๊ทธ๋ ธ์„ ๋•Œ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชจ์–‘์ด ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

connecting_map_of_snake_diagram

Snake lemma๋Š” ๋ณดํ†ต ๋‹ค์Œ ๊ธ€์—์„œ์™€ ๊ฐ™์ด long exact sequence๋ฅผ ๊ทธ๋ฆด ๋•Œ ์‚ฌ์šฉ๋˜์ง€๋งŒ, ๋‹ค์Œ์˜ ๋˜ ๋‹ค๋ฅธ ๋”ฐ๋ฆ„์ •๋ฆฌ ๋˜ํ•œ ๊ฐ–๋Š”๋‹ค.

๋”ฐ๋ฆ„์ •๋ฆฌ 7 (The 3ร—3 lemma) ๊ฐ ํ–‰์ด exact์ธ commutative diagram

Nine_lemma

์ด ์ฃผ์–ด์กŒ๋‹ค ํ•˜์ž. ๋งŒ์ผ ์ฒซ ๋‘ ๊ฐœ์˜ ์—ด์ด ๋ชจ๋‘ short exact sequence๋ผ๋ฉด ๋งˆ์ง€๋ง‰ ์—ด ๋˜ํ•œ short exact sequence๊ฐ€ ๋˜๊ณ , ๋งˆ์ง€๋ง‰ ๋‘ ๊ฐœ์˜ ์—ด์ด ๋ชจ๋‘ short exact sequence๋ผ๋ฉด ์ฒซ ์—ด ๋˜ํ•œ short exact sequence๊ฐ€ ๋œ๋‹ค.


์ฐธ๊ณ ๋ฌธํ—Œ

[Hu] S.T. Hu, Introduction to homological algebra. University Microfilms, 1979.

๋Œ“๊ธ€๋‚จ๊ธฐ๊ธฐ